

LG-T1921RGBA-TD-AL DATA SHEET

SPEC. NO. : <u>SZ22101501</u>
DATE : <u>2022/10/15</u>

REV. $\underline{A}/\underline{0}$

Approved By: Checked By: Prepared By:

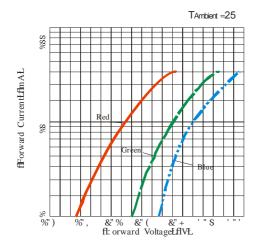
LG-T1921RGBA-TD-AL

TOP Full-color LED

Catalogue

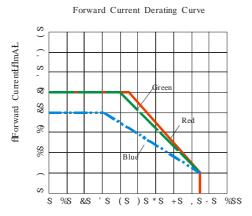
Electrical Characteristics......3

Typical CharacteriD[..cter)5(i4ctecter)5(5f BT 0 Tc..cteu)5(rve0 9 0 J 0.056 TD[...)**T**J 02.73TD-A

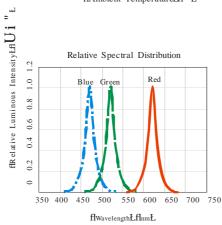

> **Page** 2 of 13

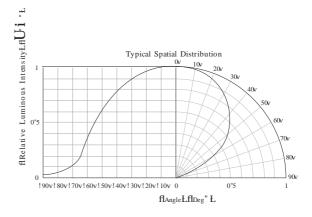
Typical Characteristics Curves

Volt!Ampere Characteristics



Relative Luminous Intensity VS Forward Current


TAmbient =25


fRelative Luminous Intensity LUi"

fForward Current LflnA Ł

flAmbient TemperatureLfl L

Reliability Test Items And Conditions

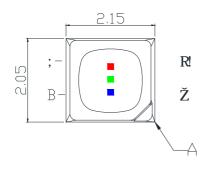
实验项目 Test Items	参考标准 Reference	实验条件 Test Conditions	时间	样品数	判据 Crite
Test Items	Reference	Test Conditions	Time	Quantit	Crite
	MIL-STD-202G	-40 (30min)←→100 (30min)	300	22	0/22
Thermal Shock	MIE 515 2020	vo (somm) - 100 (somm)	300 cycles		0/22
	JEITA ED-4701 200	-10 ——+65 0%-90%RH	10	22	0/22
Temperature And Humidity Cyclic	203	24hrs./1cycle	10 cycles	22	0/22
	JEITA ED-4701 200	T. 100	1000h	22	0/22
High Temperature Storage	201	Ta=100			
	JEITA ED-4701 200	Ta=-40	1000h	22	0/22
Low Temperature Storage	202	1a=-40			
	JEITA ED-4701 100		40001		0./2.2
High Temperature High Humidity Storage	103	Ta=60 RH=90%	1000h	22	0/22
	JESD22-A108D	Ta=25	1000h	22	0/22
Life Test	JESD22-A108D	$IF_R = 15 \text{mA}, IF_G = 8 \text{mA}, IF_B = 5 \text{mA}$	100011	22	0/22
	HEGD22 A 100D	Ta=85	10001	22	0/22
High Temperature Life Test	JESD22-A108D	$IF_R = 15 \text{mA}, IF_G = 8 \text{mA}, IF_B = 5 \text{mA}$	1000h	22	0/22
	IECD22 A 100D	Ta=-40	1000h	22	0/22
Low Temperature Life Test	JESD22-A108D	$IF_R = 15 \text{mA}, IF_G = 8 \text{mA}, IF_B = 5 \text{mA}$	10000	22	0/22
	GB/T 4937, ,2.2&2.3	Tsol*=260 10sec.	2	22	0/22
Resistance to Soldering Heat			2 times		

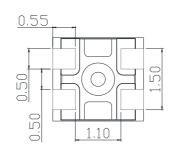
Criteria For Judging Damage

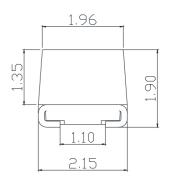
测试项目	符号	测试条件	判定标准
Test Items	Symbol	Test Conditions	Criteria For Judging Damage
Forward Voltage	V_{F}	$I_{F}\!\!=I_{FT}$	±10% Initial Data±10%
Reverse Current	I_R	$V_R = 5V$	I_R 10 μA
Luminous Intensity	$I_{ m V}$	$\rm I_F = I_{FT}$	I_V 30% I_V 50% Average I_V degradation \leq 30%; Single LED I_V degradation \leq 50%
Resistance to Soldering Heat			No dead light exists.

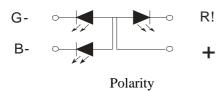
Tsol-

* Note: Tsol-Temperature of tin liquid $\;\;\;\;$ Iff Typical current.

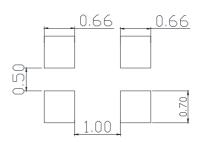




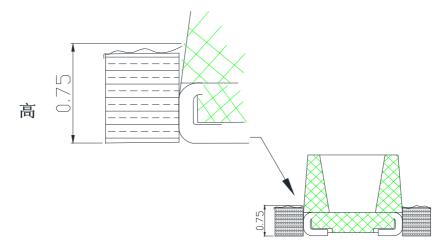

Product design and operational recommendation


1 mm

Product design Unit: mm



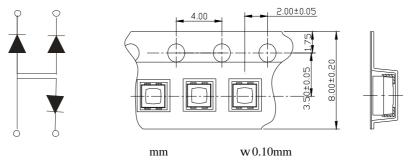
Note A A Nick Mark


2 mm

Recommended soldering pad (Unit: mm)

3 0.75mm

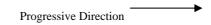
Recommendation for glue filling: filling height must be higher than or equal to 0.75mm



1

Packaging (1)

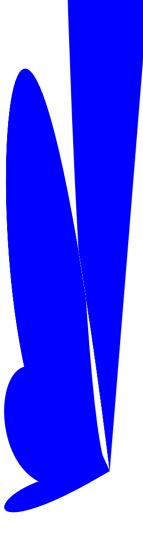
♦ Carrier Tape



All dimensions in mm, tolerances unless mentioned is $\,w\,0.10$ mm.

	Details	Of	Carrier	Tape
1	Detuils	\mathbf{v}	Cullici	Lupe

Progressive Direction				
0				


♦ Reel Dimension

Label

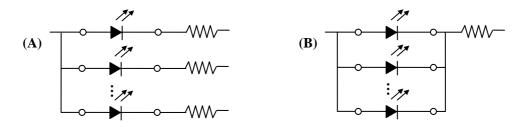
LIGH

LIGHT

	2
Guidel	line for Soldering (2)
	Reflow soldering should not be done more than one time.
	LED
	Stress on the LEDs should be avoided during heating in the reflow soldering process.
•	Stress on the LEDs should be avoided during heating in the renow soldering process.

(2)

Precautions (2)


3.

Design Consideration

• LED

In designing a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED. In the meanwhile, resistors for protection should be applied, otherwise slight voltage shift will cause big current change which will probably lead to damage.

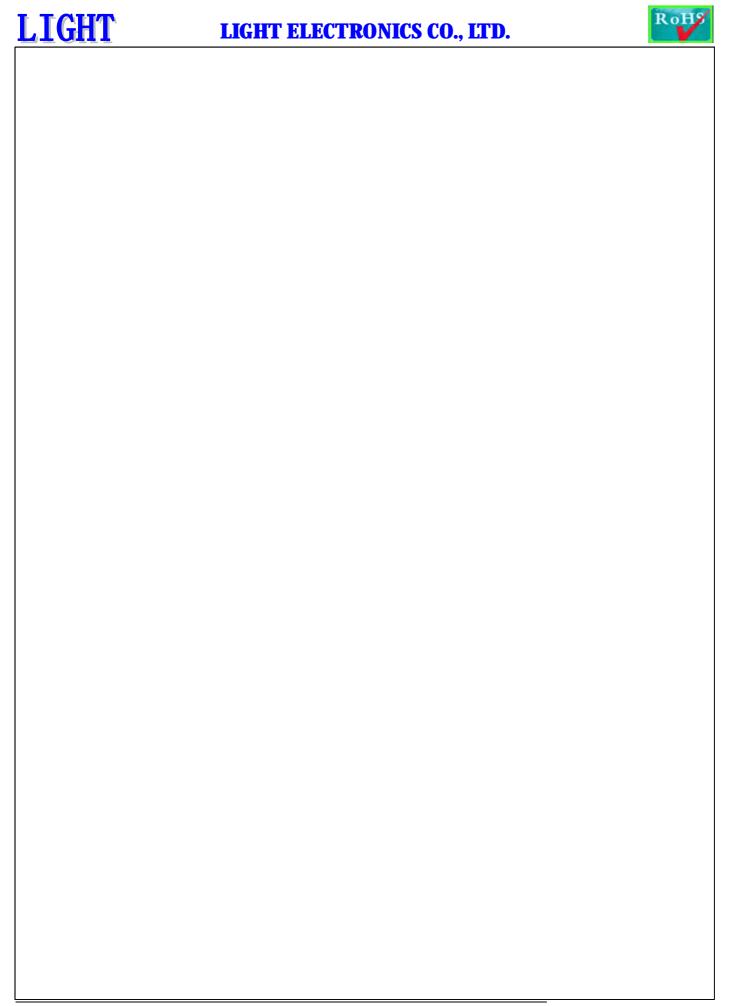
It is recommended to use Circuit A which regulates the current flowing through each LED rather than Circuit B. When driving LEDs with a constant voltage in Circuit B, the current through the LEDs may vary due to the variation in Forward Voltage (VF) of the LEDs. In the worst case, some LED may be subjected to stress in the excess of the Absolute Maximum Rating.

• LED LED

Thermal Design is paramount importance because heat generation may result in the Characteristics decline, such as brightness decrease, Color change and so on. Please consider the heat dissipation when making the system design.

4. Reverse voltage protection

• LED


LED

LED

In general, the reverse current of LED is very small, which won't affect the normal use of components. But when it is often suffered the reverse voltage which exceeds the limit of the component then it will be damaged.

5V

Part No./	LG-T1921RGBA-TD-AL	Page	12 of 13

